597 research outputs found

    Feedback: Still the Simplest and Best Solution

    Get PDF
    Most engineers are (indirectly) trained to be "feedforward thinkers" and they immediately think of "model inversion" when it comes to doing control. Thus, they prefer to rely on models instead of data, although feedback solutions in most cases are much simpler and more robust

    Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators

    Full text link
    We present an estimator-based control design procedure for flow control, using reduced-order models of the governing equations, linearized about a possibly unstable steady state. The reduced models are obtained using an approximate balanced truncation method that retains the most controllable and observable modes of the system. The original method is valid only for stable linear systems, and we present an extension to unstable linear systems. The dynamics on the unstable subspace are represented by projecting the original equations onto the global unstable eigenmodes, assumed to be small in number. A snapshot-based algorithm is developed, using approximate balanced truncation, for obtaining a reduced-order model of the dynamics on the stable subspace. The proposed algorithm is used to study feedback control of 2-D flow over a flat plate at a low Reynolds number and at large angles of attack, where the natural flow is vortex shedding, though there also exists an unstable steady state. For control design, we derive reduced-order models valid in the neighborhood of this unstable steady state. The actuation is modeled as a localized body force near the leading edge of the flat plate, and the sensors are two velocity measurements in the near-wake of the plate. A reduced-order Kalman filter is developed based on these models and is shown to accurately reconstruct the flow field from the sensor measurements, and the resulting estimator-based control is shown to stabilize the unstable steady state. For small perturbations of the steady state, the model accurately predicts the response of the full simulation. Furthermore, the resulting controller is even able to suppress the stable periodic vortex shedding, where the nonlinear effects are strong, thus implying a large domain of attraction of the stabilized steady state.Comment: 36 pages, 17 figure

    Linear feedback control of transient energy growth and control performance limitations in subcritical plane Poiseuille flow

    Get PDF
    Suppression of the transient energy growth in subcritical plane Poiseuille flow via feedback control is addressed. It is assumed that the time derivative of any of the velocity components can be imposed at the walls as control input, and that full-state information is available. We show that it is impossible to design a linear state-feedback controller that leads to a closed-loop flow system without transient energy growth. In a subsequent step, full-state feedback controllers -- directly targeting the transient growth mechanism -- are designed, using a procedure based on a Linear Matrix Inequalities approach. The performance of such controllers is analyzed first in the linear case, where comparison to previously proposed linear-quadratic optimal controllers is made; further, transition thresholds are evaluated via Direct Numerical Simulations of the controlled three-dimensional Poiseuille flow against different initial conditions of physical interest, employing different velocity components as wall actuation. The present controllers are effective in increasing the transition thresholds in closed loop, with varying degree of performance depending on the initial condition and the actuation component employed

    Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response

    Get PDF
    The flow dynamics (tray hydraulics) are of key importance for the initial dynamic response of distillation columns. The most important parameters are the liquid holdup, the liquid hydraulic time constant and the vapor constant representing the initial effect of a change in vapor flow on liquid flow. In the paper we present methods for determining these parameters experimentally, and compare the results with estimates from available correlations such as the Francis Weir formula

    Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system

    Get PDF
    For any given system the number and location of sensors can affect the closed-loop performance as well as the reliability of the system. Hence, one problem in control system design is the selection of the sensors in some optimum sense that considers both the system performance and reliability. Although some methods have been proposed that deal with some of the aforementioned aspects, in this work, a design framework dealing with both control and reliability aspects is presented. The proposed framework is able to identify the best sensor set for which optimum performance is achieved even under single or multiple sensor failures with minimum sensor redundancy. The proposed systematic framework combines linear quadratic Gaussian control, fault tolerant control and multiobjective optimisation. The efficacy of the proposed framework is shown via appropriate simulations on an electro-magnetic suspension system

    Unsteady low-Reynolds number flow control in different regimes

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106476/1/AIAA2013-353.pd

    Design examples using µ-synthesis: Space shuttle lateral axis FCS during reentry

    Get PDF
    This paper studies the application of Structured Singular Values (SSV or µ) for analysis and synthesis of the Space Shuttle lateral axis flight control system (FCS) during reentry. While this is a fairly standard FCS problem in most respects, the aircraft model is highly uncertain due to the poorly known aerodynamic characteristics (e.g. aero coefficients). Comparisons are made of the conventional FCS with alternatives based on H∞ optimal control and µ-synthesis. The problem as formulated is particularly interesting and challenging because the uncertainty is large and highly structured

    Model-based Aeroservoelastic Design and Load Alleviation of Large Wind Turbine Blades

    No full text
    This paper presents an aeroservoelastic modeling approach for dynamic load alleviation in large wind turbines with trailing-edge aerodynamic surfaces. The tower, potentially on a moving base, and the rotating blades are modeled using geometrically non-linear composite beams, which are linearized around reference conditions with arbitrarily-large structural displacements. Time-domain aerodynamics are given by a linearized 3-D unsteady vortexlattice method and the resulting dynamic aeroelastic model is written in a state-space formulation suitable for model reductions and control synthesis. A linear model of a single blade is used to design a Linear-Quadratic-Gaussian regulator on its root-bending moments, which is finally shown to provide load reductions of about 20% in closed-loop on the full wind turbine non-linear aeroelastic model
    corecore